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The shape of the liquid/gas interface of a weld pool is determined by the balance of 
gravitational and surface tension forces. Equilibrium profiles and stability criteria 
are derived for vertical and horizontal situations. 

1. Introduction 
In  many welding situations the orientation of the workpiece may be such that the 

liquid metal in the weld pool will tend to sag under gravity. A restoring mechanism 
is surface tension and the eventual shape of the liquid/air (or shielding gas) profile is 
the result of a balance,between gravitational and surface-tension forces. In this paper 
we consider a variety of problems, based on vertical and horizontal specimens, and 
look for equilibrium profiles and stability criteria. 

The shapes of the solidified welds are of practical importance. The shape of pene- 
trating beads affects the fatigue properties of welded joints and is of particular signifi- 
cance in boiler plant (since the through-flow of fluids may be disturbed by excessive 
weld-bead protrusions). In  nuclear plant the tolerance for unfavourable contours may 
be much less owing to the risk of downstream accumulation of debris which may give 
rise to corrosion or erosion hazards in high heat-flux designs. The loss of total section 
would also be unacceptable and is sometimes difficult to monitor. Currently there is 
almost total reliance on welding procedure and manufacturing fit-up parameters to 
obtain suitable weld-bead contours, so there is a strong motivation to examine by 
theoretical models the predicted shape of such contours and to  determine the main 
controlling parameters. 

The subject of equilibrium and stability of hanging liquid drops has been re-opened 
in recent years by Padday (1971), Padday & Pitt (1973), Pitts (1973,1974,1976) and 
Majumdar & Michael (1976), who considered the problem of a water droplet suspended 
from a horizontal plane or tap. Some work more directly related to welding has been 
carried out by Nishiguchi, Ohji & Matsui (1977) on the shape of liquid weld metal 
when welding an L-shaped joint with the use of filler metal. J. C. Meewezen (1976, 
private communication) has done some experiments on welding vertical tubes without 
the addition of filler metal under a variety of conditions. A few of his photographs 
of sections of the solidified profile are presented here. 

The aim of this paper is to model the shapes of the free surfaces in the important 
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cases of welding vertical and horizontal plates. The main simplifying assumptions 
that we make are the neglect of fluid motion, uniformity of arc pressure and of surface- 
tension coefficient. We also idealize the geometry by considering only two-dimensional 
situations. In  addition we consider the question of whether our equilibrium profiles 
are stable. 

It is importtint to note that throughout this work we consider solid and liquid 
regions which are different phases of the same material. This means that the interface 
between the two phases will not be sharply defined. In  practice there is a region which 
contains both solid and liquid material in thermodynamic equilibrium and which is 
typically tens of micrometres in thickness. This is in contrast to the usual surface- 
tension problems of different materials in contact, where the transition region will be 
only a few atomic layers in thickness. Hence it is no longer appropriate to think in 
terms of a unique contact angle and instead it is more reasonable to apply a boundary 
condition of attachment at the corner of the liquid region. 

2. Vertical plate 
2.1. One-sided two-dimensional pro$le 

We consider a vertical surface of a thick block of material which is being heated 
locally by a surface heat source so as to form a weld pool. Owing to gravity, the 
molten metal sags and may be supported by surface tension. In  this section we assume 
that the material does not melt through to the other side. It is assumed that the pool 
is infinite in the third (namely z )  direction. 

Ignoring fluid flow in the pool, the total potential energy per unit length in the z 
direction is 

taking LT as the energy of the undistorted surface, where s(x) is the length of surface 
measured from the top of the pool ( x  = - +L), T is the coefficient of surface tension, 
p is the density of the material and g is the acceleration due to gravity. We initially 
restrict our attention to profiles which lie entirely in the range -4L < x < L;  the 
overhanging case is considered later in this section. The equilibrium profile must be 
that surface y (x )  which minimizes the total potential energy, E ,  subject to the con- 
straint of mass conservation (assuming that no liquid is lost) 

The boundary conditions we apply are that the free surface remains attached to the 
corners, so that y = 0 at both x = -3L and x = BL. Putting 

F = T ds/dx - pgxy - hy, 

where ds/dx = (1 + yf2)* and h is the Lagrange multiplier, in the Euler-Lagrange 
formula for the equilibrium shape 

aF/ay- (d/dx) (aJ'/8yf) = 0 
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(Craggs 1973), we immediately obtain the differential equation 

where c = -h /pg  is a constant, unknown at this stage of the calculation. This arbi- 
trariness arises because we do not have any reference point for pressure inside the 
liquid. 

We introduce the following normalized variables 

X = x /L ,  Y = y / L ,  C = c /L,  e = pgL2/T. (4) 

Equation (3) becomes 

{Y‘ / (  1 + Y’2)t)l = - s (X - C), ( 5 )  

where the prime refers to d / d X .  
Integrating once, we obtain 

Y ’ / ( l +  Y‘2)b = -B(&X2-CX-K2), (6) 

where we have written the constant of integration as - K2. We will show below that 
K must be real. Equation ( 6 )  must be solved together with the constraint (Z), which 
we write in non-dimensional form 

$-”, Y d X  = 0.  (7) 

Putting f ( X )  = *X2  - C X  - K2 in equation (6) and rearranging gives 

Y’ = - €f/( 1 - B y ” ) ,  (8) 

where we have taken the negative sign in the square root for self-consistency. 
We can readily show that the profile has a point of inflexion at the centre X = 0 by 

the following argument. Integrating (7) by parts, using the boundary conditions 
Y = 0 at X = &&,we have 

Y’(X  - C )  dX = 0. 

Writing f’ = X - C and substituting in the above integral yields 

or 

, 
4 
1 ff’( 1 - s2f2)-* dX = 0 

[( 1 - €9f9*]f, = 0, 

from which we find C = 0 and hence note from equation (5) that $he curvature is zero 
at X = 0. (The other solution, with K2 = & and C arbitrary, can be shown to contradict 
the mass conservation condition (‘I).) Furthermore, Y’ is symmetric about X = 0 
from equation (6) and in view of the boundary conditions Y = 0 at X = 2 & it follows 
that Y ( X )  is antisymmetric about X = 0. 
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Substituting f = &X2 - K2 into equation (8) givesf 

Y' = - e(QX2 - K2)/{ 1 - e2(QX2 - K2)2)*. (9) 

Noting that K has to be real for Y' to be zero somewhere in the range -Q < X < i, 
making the substitutions 

and integrating yields 
5 = X/(24K), p = eK2 

For computational purposes, it is convenient to express t-_-, integral in terms of 
elliptic integrals in the form 

Y(5) = ( - K/P*) [2{E(Qn I m) - E($ I m)> - {F(h I m) - F($ I m)>I, (11) 

where E and F are the elliptic integrals of the second and first kind, respectively, 
5 = (1 + 1/p)* cos $ and m = &( 1 +p).  

The boundary condition Y = 0 at X = & may now be applied to determine K .  
Figure 1 shows the profiles for various values of the dimensionless surface-tension 
parameter e. For small e the linearized solution 

Y ( X )  = Q€X(&-X2)  

corresponding to K = 1/2/24 is a good approximation. For larger e the curvature 
increases and nonlinear effects are clearly important. There is a value of e, e = el say, 
for which the profile becomes horizontal at the corners, i.e. Y' + co. This value may 
be determined by noting that the denominator of equation (9) must be zero for X = Q. 

For e > el, we must integrate through the square-root singularity in the integral (10) 
and provided we take the correct sign for Y' everywhere we obtain a double-valued 
profile which overhangs the corner X = +. The equation of the profile is still given by 
( l l ) ,  which may now be regarded as giving the profile in terms of the parameter $. 
As $ decreases from Qn to 0, the profile is traced out from the point of inflexion X = 0 
to the point X = X,,,, where the tangent is horizontal. The remainder of the profile 
from X = X,,, to X = 4 corresponds to negative values of $. 

As we increase the value ofp fromp = 0.65.. . , which corresponds to e = el = 13-21.. . 
t o p  = 0.70.. , , which corresponds to e = e2 = 13.46.. ., we trace out a sequenceof over- 
hanging profiles. Increasing p still further, we are able to obtain new overhanging 
profiles with E decreasing from e = e2. A limiting profile is reached for E = e3 = 6-82.. ., 
p = 0.85.. . , which has a vertical tangent at the point of contact X = Q. No profiles 
exist for p > 0.85. It is possible to obtain overhanging profiles for e < e3, with p 
decreasing from 0.85 as e decreases; however these profiles must be rejected on physical 
grounds as they would have liquid metal in the region X > Q, Y < 0, which we have 
assumed to be solid. Figure 2 shows overhanging profiles for several values of e and 
figure 3 shows the variation of K with e. From figure 3 we see that three cases can arise. 

t The derivation of (9) only applies to single-valued weld profiles. Overhanging profiles may 
be considered in terms of a parameter which varies monotonically along the length of the profile. 
This approach leads to an equation which is identical with (Q), except that the sign of Y' changes 
aa we move through the lowest point of the profile. 
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X 
FIGURE 1. Equilibrium profiles for a two-dimensional vertical weld 

for various values of the parameter e = pgLa/T. 

For s < e3 there is a unique profile which is single-valued. For e3 < e < el, there is one 
overhanging profile and one single-valued profile, while for el < E < E, there are two 
overhanging profiles. 

2.2.  Two-sided two-dimensional projile 
We may readily extend the model to the case where the molten zone penetrates right 
through the material so that there are two free surfaces, y l (x)  and y&), to be deter- 
mined. Furthermore, we can allow for a pressure drop, Ap, between the two sides. 
The equations for the two surfaces are of the same form as equation (5) for the one- 
sided problem, i.e. 

and 

where 

{ Yi( 1 + Yi2)-B}’ = - E(X  - C )  + AP 

{ Y;( 1 + Y;2)-*}’ = s(X - C ) ,  

(12) 

(13) 

5 = yl /Ll ,  Yz = y2/Ll, X = X/L,, 6 = pgL!/T, AP = L,Ap/T, (14) 

where L, and L, are the front and back widths, respectively, and C is some arbitrary 
constant. Mass conservation relates the two surfaces by the condition 
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FIGVRE 2. Overhanging equilibrium proflea (lower half only) 
for a two-dimensional vertical weld. 
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FIQURE 3. Variation of E with K for one-sided vertical profiles. 



Weld-pool sag 79 i 
where h = L,/Ll and the planes Yl = 0 and yZ = 0 are taken to be the undistorted 
surfaces of the plate. Integrating (12) and (13) once, and rearranging, gives 

(16) Y; = -€fi/( 1 -sy$ 
and 

Y:, = € f,/( 1 - €y$, 
where 

fl(X) = &X2 - (C + AP/E) X - K,, (18) 

f 2 ( X )  = 4x2- CX - K2, (19) 

Following the same lines as in 5 2.1, we can express the mass conservation equation 
and K ,  and K ,  are constants of integration. 

(15) in terms of fi and f,, viz. 

[1-~2f~(t)]+-[i-~yf(-&)])+[i -~2f;(&h)]*-[i--y:( -&A)]* = 0, (20) 

using the attachment conditions Y, = 0 at X = f 4 and Y2 = 0 at X = & +A. Integrat- 
ing equation (16) from X = - & to X = + yields 

P 

-4 
I fl( 1 - e2f?)-P dX = 0, 

which may be reduced to elliptic integrals by standard methods. Equation (17) may 
be treated in a similar way, which together with equation (20) gives three nonlinear 
equations in the three unknowns C, K ,  and K,. 

When AP = 0, we find that C = 0 and the problem decouples, both surfaces being 
the solution of the appropriate one-sided problem. When a pressure drop is applied 
across the plate, the surfaces tend to bulge towards the side at lower pressure as 
shown in figure 4. As for the one-sided problem, solutions exist which overhang on 
either the front or the back faces and a limit arises wheneither surface becomes 
vertical a t  a corner. Beyond this limit a steady solution does not exist. 

As might be expected, the pressure drop required to produce this critical condition 
is very small; typically it is around 1% atmospheric pressure. Hence we note that 
the weld profiles must be very sensitive to any variation in pressure, which might be 
caused by shielding gas, outgassing, arc pressure or side draughts. 

2.3. Stability for vertical slot 

It is clearly important to establish whether the equilibrium profiles we have obtained 
are actually stable. We first consider the simplest problem of 0 2.1 and we restrict our 
attention to disturbances which leave the problem two-dimensional. From ( l ) ,  the 
total potential energy per unit length, scaled by the factor LT, is 

E = s-", {(1+ Y'2)*-eXy)dX.  

We shall first show that the profiles corresponding to the segment AB on figure 3 
(i.e. the single-valued profiles) are stable. Suppose that the shape of the surface is 
distortedslightlyfromitsequilibriumvalue Y ( X )  to Y ( X )  + S Y ( X ) ,  where lSYl I YI, 
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FIGURE 4. Effect of a differential pressure drop, hp (N m-P), on the 
distortion of a two-sided vertical weld pool. 

and we assume that the ends remain fixed, i.e. SY = 0 at X = f 8. The corresponding 
change in energy is 

SE = { [ 1 + ( Y' + 6Y')2]+ - [ 1 + Y'2]* - EXSY} dX. 

From the Euler-Lagrange equation (Craggs 1973), terms of order SY vanish identically 
and we have 

Provided 6Y' is small, the first term on the right-hand side dominates and SE is 
positive definite. Hence our equilibrium profile is stable for small two-dimensional 
disturbances provided the molten material remains attached to the corners. 

The small region of slightly overhanging profiles corresponding to the segment BC 
in figure 3 is also stable. To prove the stability requires a rather lengthy argument 
and we shall give only a very brief outline of the proof here. As the profile is overhanging, 
we must first write down the energy integral E in parametric form. The most convenient 
form for the parameter t is to take t = X in the range 0 < X < 8 and t = B -  Y in the 
range X > 9, where the constant B is chosen to make t continuous at the join X = 8.  
The other half of the curve is parametrized in the same way. We may now write down 
the second variation of the energy, taking care a t  the join X = 8, where the perturba- 
tions are not defined continuously in terms of the parameter t .  Finally an argument 
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similar to Jacobi’s second condition shows that the second variation will be positive 
definite and the equilibrium will be stable provided the solution of a pair of ordinary 
differential equations does not possess a zero within the range of interest. Numerical 
tests show that this is the case throughout the range BC. If we apply the same test to  
points in the segment CD, we find that the solution of the pair of ordinary differential 
equations does possess a zero so that the energy is no longer positive definite and the 
segment CD corresponds to a region of unstable equilibrium. 

The stability of the problem of $2.2 is similar. For a problem with both profiles 
single-valued the energy per unit length is now 

E = {( 1 + Y;2)* - EX& + APY,} dX + {( 1 + Yi2)* + eXY,} dX 

to within an arbitrary constant. We suppose now that the two surfaces are slightly 
distorted to Y,+SY, and Y,+SyZ and we again assume that we have attachment at 
the corners. The change in energy is now 

*A 
6E = /!* g(1+ Y;2)-+SY;2dx+/-+ *(I + Y;;2)-~~Yi2dx+o(sY;3+6Y;3) ,  (22) 

where the terms of 0(6Y,) and 0(6Y,) have vanished because of the equilibrium equa- 
tions (12) and (13). The second-order terms will dominate provided SY; and 6Y; are 
sufficiently small, so that SE is positive definite and our single-valued equilibrium 
profiles are stable to small two-dimensional disturbances. 

We do not consider the stability of overhanging profiles here, but we expect this 
to follow along similar lines to the one-sided problem. 

3. Horizontal plate 
3.1. Two-dimensional slot 

We now consider a horizontal plate. The interesting case occurs when both the upper 
and lower surfaces are molten. Consider firstly an infinitely long slot with top and 
bottom widths L, and L,, and thickness h. The equations for the unknown top and 
bottom surfaces Yl(X) and Y,(X) are 

and 
{ Y; / (  1 + Y’2)6.}‘ = E(Yl - C )  

- { Yi/(  1 + Yi2)*}’ = s(yZ - C),  

(23) 

(24) 

the normalization being the same as in (14). The boundary conditions are 

Yl= 0 at X =  j-4, (25) 

y Z =  - H  at X =  _+&A, (26) 

where H = I t / &  and mass conservation implies that 
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noting that the profiles must be symmetric about X = 0. In  this case the effect of a 
differential pressure, Ap, can be incorporated by simply increasing H by an amount 
Ap/pgLl. The solution of the linearized problem (with Yi2 < 1 and Yi2 < 1) is straight- 
forward and given by 

& = a( 1 - cash dX/cosh id)/( v - l), (28) 

Y2 = H( 1 - u cos€*x/cos +hd)/(Y - l), 
where 

Y = (1 - (2/& fanh &*) / (A  - (2/& tan + A d ) .  

Obviously, this linearized solution is adequate only if the distortion of the surfaces 
is small. The linearized solution breaks down altogether when v = 1 and by inspec- 
tion of (30) we note that the first positive real root of Y = 1 occurs in the range 
n < €+A < 3n. 

In  general we must solve the nonlinear problem, and integrating (23) and (24) yields 

(1 + Yi2)-' = 1 - +e{(Yl - C)2 - ( Y,* - C)2} E Al(Yl) 

(1 + Y i 2 ) 4  = 1 + +c{(Y2 - C)2- ( Yg - C)z} 3 A2(Y2) 

say, 

say, 

(31) 

(32) 
and 

where Y;* and Y,* are the values of and Y2 at the centre X = 0, both of which are 
unknown at this stage. Rearranging equation (31), integrating and using the boundary 
condition (25) gives 

which may also be reduced to elliptic integrals. Equation (32) may be treated in a 
similar way. Integrating the mass conservation condition (27) by parts as before gives 

{ 1 - L 4 ~ ( 0 ) } ~ + ( 1 - A ~ ( - H ) } ~ - & { H / \ - C ( 1 - h ) }  = 0, (34) 

and (32)-(34) are three equations which may be solved to determine C ,  Y,* and Yg. 
Figure 5 shows the development of the sag with increasing differential pressure, 

taking B = 3 and A = 0.6. From figure 5 we see that the lower surface is nearly vertical 
at the corner for H = 1.5 and, from a practical point of view, this weld would be 
unacceptable. Another extreme arises when the upper surface becomes vertical at 
the corner, e.g. when heating a horizontal plate from underneath so that h =- 1. 

Finally, we note that, if C < -H,  then the lower surface has a point of inflexion. 
Furthermore, by inspection of the form of equation (24) we see that Yi is symmetric 
about the point of inflexion. In  fact, Yi = 0 when Y2 = Y,* and Y2 = 2C- Y:, corres- 
ponding to a minimum and a maximum, respectively. Clearly the most extreme profile 
occurs when the maximum coincides with the bottom corner (i.e. at yZ = - H )  in 
which case C = - +(H - Y t ) .  For this value of C the point of inflexion arises at the 
mid-point of the lower boundary on and we may assert that no equilibrium profiles 
exist for more negative values of C .  Hence, this case presents another extreme to the 
types of welding profiles that can be obtained. 

Figure 5 also shows a profile with the lower boundary vertical at the corner. Figure 
6 shows a profile with the upper boundary vertical at the corner. Figure 7 is a case 
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FIQURE 6. Weld-pool sag for a horizontal plate with increaaing differential 
pressure; B = 3, h = 0.0. 

where the point of inflexion is very close to the mid-point of the lower surface. However, 
it is possible to vary both B and H significantly, remaining extremely close to this limit, 
but the results do not indicate that the limit can actually be achieved. 

3.2. Stability for a horizontal slot 
We again restrict our attention to disturbances which leave the problem two-dimen- 
sional and we exclude values of 8 and H which lie on or to the right of the critical curve 
as in figure 9. To within an arbitrary constant the total potential energy per unit 
length is 

We now consider the surfaces to be displaced from their equilibrium shapes Yl (X) ,  Y2(X)  
to the perturbed shapes & + El, & + E2. The values El and E2 must be zero at the corners 
and mass conservation implies that 
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FIUURE 6. Weld-pool sag in a horizontal plate showing the upper boundary 
vertical at the corner; e = 1.473, h = 1.66, H = 2. 

0.5 

FIUURE 7. Weld-pool sag in a horizontal plate showing a point of inflexion 
of the lower surface. 

Substituting in (38), using (36) and the equilibrium equations (23) and (24), we obtain 
the change in potential energy as 

8E = &El + 6E2, 
where 
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We note that SE, is positive definite and stability clearly holds if SE, is also positive 
definite, We first derive a sufficient condition for this to be true. 

Let us assume that aY,(X; C)/aC Q 0 for - $ A  d 2 Q *A. To evaluate aYa/aC we 
solve the equilibrium equation (24) with the boundary conditions (26) but we relax 
the constraint of mass conservation (27). It is then possible to determine the value of 
aY,/aC for the equilibrium value of C. 

Defining r] = aY,/aC- 1, so that r ]  < 0 everywhere, we see that r ]  satisfies 

((1 + Y;2)-bfy+q = 0 (39) 

(by differentiating (24) with respect to C). We now introduce a function U ( X )  which 
satisfies equation (39) and the initial conditions U = 0, U' = 1 at X = - +A. Since the 
zeros of two linearly independent solutions of this type of equation interlace (Burkill 
1962), U can have a t  most one zero in the interval - * A  Q X Q *A.  Hence U > 0 for 
X > - * A  and we divide throughout by U ,  obtaining 

€ = - {( 1 + Yi")-# U' 1 ' /u*  
Following Craggs (1  973), we can avoid considering the form of Ya by substituting for 
B in (38) and integrating by parts to obtain 

2 0, 

where we have assumed that 6; is finite at X = - 4 A  so that 

lim (g/u)=o. 
X +-*A 

For the extreme SE, = 0 we require 6; - & V / V  = 0, i.e. ca = AU.  But U(+A) > 0 
and &(4A) = 0, so A = 0 and f 2  = 0. Hence SE, is positive definite and the condition 

aqac Q o (40) 

is sufficient for stable equilibrium. This condition is equivalent to a stability criterion 
found by Majumdar & Michael (1976) for the stability of a drop hanging from a tap 
under constant pressure. 

If we go outside this region where stability has been demonstrated, the situation 
is not so clear. We can no longer expect SE, to be positive definite, i.e. we expect to 
be able to find a perturbation fa for which 6E, < 0. However ingeneral f 2  dX # 0 and 
hence by mass conservation [, dX is also non-zero. Since SE, is positive definite it is 
possible that the sum SE, + 6E, may also be positive definite, which would mean that 
the presence of the upper surface would actually extend the region of stable equilibrium. 
We do not attempt to analyse such a stability problem in this paper. 

It is a straightforward numerical exercise to determine the values of the parameters 
6, H and h at which aY,/aC changes sign, which marks the limit for which stability 
has been demonstrated. Figures 8 and 9 show the variation of H with 8 for this stability 
criterion to be satisfied for the cases h = Q and $ respectively. Figure 8 also shows a 



J .  G. Andrews, D. R.  Atthey and J .  G. By&-Smith 

l o  

5 -  

798 

, 
- 
- 
- 

- 

10 

H 5  

0 

E 

FIGURE 8. Variation of H with e for A = 8 for (a) the limiting case with the lower surface vertical 
at the corner, (b) the stability criterion (40). 

curve on which the lower surface becomes vertical at the corner. This curve is trun- 
cated at around E = 8. For larger values of E a point of inflexion appears in the lower 
surface (i.e. C < - H )  and the limit to our analysis arises when the lower surface 
becomes vertical at the point of inflexion rather than a t  the corner. We do not consider 
this case. For the range of parameters covered we note that the stability curve lies 
below the limit with the vertical corner at the lower surface. Figure 9 also shows the 
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curve on which the upper surface becomes vertical at a corner. We note that this 
curve intersects the stability curve at  E = 2.404; H = 1.125 and, for larger values of E ,  

the stability curve lies below the vertical corner curve. Indeed the stability curve 
intersects the line H = 0 at E = 3.55. For E < 2.404 the stability curve would lie 
above the curve a, so that for h = g, E < 2.404 we can assert that all the monotonic 
profiles are stable. 

4. Discussion 
Our model considers the distortion of the weld profile due to the hydrostatic pressure 

in the liquid metal. However the real welding situation has several complicating 
features which we have not considered. We have assumed that the fluid is stationary, 
but in practice it is observed to be in motion due to electromagnetic j x B forces in 
the liquid metal (Woods & Milner 1971). Atthey (1980) has estimated the pressure 
distribution arising from these j xB forces to be around 25Nm-2 for a Gaussian 
current input from the arc, taking a current of 100 A and a characteristic arc radius 
of 2-5 mm. This compares with a typical hydrostatic pressure of 250 N m-2. However, 
for more concentrated distributions, this effect could become very important. Another 
effect is the external pressure over the two surfaces. The pressure drop is caused 
primarily by the interaction of the electric arc and the jet of shielding gas with the 
liquid surface and its value may be expected to vary across the surface. To measure this 
variation with position would be extremely difficult and even an average value is 
relatively hard to obtain. 

There is also some uncertainty in the value of the surface-tension coefficient, T. 
We can expect the value of T to vary with temperature, which in turn will v+ry across 
the surface. The presence of slag on the metal surface and the possibility of oxidation 
may also affect T. Furthermore the assumption of volume conservation of material 
should be adjusted to allow for thermal expansion; post-mortem examination of weld 
sections indicates the increase in volume to be around 5-10 yo. 

Figures 10(a, b,  d)  show actual sections of etched welds, obtained by Meewezen 
(1976, private communication). Figure 10 (e) shows the profile given by our analysis 
for a two-dimensional slot of the same dimensions (L, = 7.49 mm, L2 = 6.22 mm) 
by taking T = 1 N m-l and p = 7800 kg m4, and assuming a pressure drop 
AP = 200 N mF2. This value of AP was chosen so as to give good agreement with the 
experimental results. A pressure drop of AP = 200 N m-2 is of the same order as 
that measured experimentally by Erokhin, Bukarov & Ischenko (1971) for a TIG 
(Tungsten-Inert-Gas) arc with a current of 100 A, using a water-cooled copper 
workpiece. Unfortunately the same authors also showed that the pressure vaned by 
at least a factor of 2 owing to the electrode shape, and it is possible that there could 
be significant differences between a copper workpiece and a real weld pool with metal 
vapour in the welding arc. Hence we can only expect qualitative agreement with 
experimental results and a proper test of the analysis would require measurement of 
arc pressure together with weld-pool sag under carefully controlled: conditions. The 
qualitative similarity is encouraging, though close agreement is hardly to be expected 
in view of the limitations in the model discussed above. 

Finally, we consider the question of whether the shape of the boundary remains 
unchanged during the process of solidification. For the one-sided problem we can 
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show that this is likely to be the case by considering a small amount of solidification 
so that the pool now occupies a region - 4 + 6 < X < 4 - 6. The remaining surface 
automatically satisfies equation (5) and, in order that the liquid attaches at the 
'new' corners, we expect Y (  - 4 + 6) and Y(4 - 6) to be equal to their old values when 
the pool extended from - 4  6 X 6 4. One solution which satisfies these conditions 
together with the mass conservation condition (in an appropriately modified form) 
is the original solution and, although we have not considered the question of unique- 
ness, we intuitively expect this solution to still apply. In  the above argument we have 
of course assumed that the solid and liquid metal have the same density. 

A further complication arises with the two-sided problem. When no pressure drop 
is applied (AP = O ) ,  the problem decouples to two separate one-sided problems and 
the above argument will apply. On the other hand, when AP # 0 the pressure drop 
will act on proportionally different areas as the two surfaces solidify and it is not 
immediately clear whether or not this will affect the shapes of the remaining liquid 
surfaces. However, we note that equations (12) and (13) with the conservation con- 
dition (15) are equivalent to the formulation 

{ Y;( 1 + Y;2)-g)' = s(X - C2)) 

Y,dX = I,, s', 
where 1, is chosen so that 

s ( C ~  - C2) = AP. 

Thus the only effect of the pressure drop is to determine the excess volume of each 
profile (Io) through equation (45). Again the problem'has decoupled into two one-sided 
profiles and, by an argument similar to that for the one-sided case, we may show that 
the liquid profiles are frozen with no change. 
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